http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=160 By Marcus J. Ranum ACM Queue vol. 2, no. 4 June 2004 Security bug? My programming language made me do it! Failing Miserably It doesn't seem that a day goes by without someone announcing a critical flaw in some crucial piece of software or other. Is software that bad? Are programmers so inept? What the heck is going on, and why is the problem getting worse instead of better? One distressing aspect of software security is that we fundamentally don't seem to "get it." In the 15 years I've been working the security beat, I have lost track of the number of times I've seen (and taught) tutorials on "how to write secure code" or read books on that topic. It's clear to me that we're: * Trying to teach programmers how to write more secure code * Failing miserably at the task We're stuck in an endless loop on the education concept. We've been trying to educate programmers about writing secure code for at least a decade and it flat-out hasn't worked. While I'm the first to agree that beating one's head against the wall shows dedication, I am starting to wonder if we've chosen the wrong wall. What's Plan B? Indeed, as I write this, I see that Microsoft, Intel, and AMD have jointly announced a new partnership to help prevent buffer overflows using hardware controls. In other words, the software quality problem has gotten so bad that the hardware guys are trying to solve it, too. Never mind that lots of processor memory-management units are capable of marking pages as nonexecutable; it just seems backward to me that we're trying to solve what is fundamentally a software problem using hardware. It's not even a generic software problem; it's a runtime environment issue that's specific to a particular programming language. Normally, when someone mentions programming languages in an article about software quality, it's an invitation for everyone to jump in with useful observations such as, "If we all programmed in [my favorite strongly hyped programming language], we wouldn't have this problem!" That might be true in some cases, but it's not reality. We tried legislating a change of programming languages with Ada back in the 1990s. Remember Ada? That was an expensive disaster. Then we tried getting everyone to switch to a "sandboxed" environment with Java in the late 1990s, and it worked better—except that everyone complained about wanting to bypass the "sandbox" to get file-level access to the local host. In fact, Java worked so well, Microsoft responded with ActiveX, which bypasses security entirely by making it easy to blame the user for authorizing bad code to execute. Please, let's not have any more alternative programming languages that will solve all our problems! What's Plan B? I think that Plan B is largely a matter of doing a lot more work on our compiler and runtime environments, with a focus on making them embed more support for code quality and error checking. We've got to put it "below the radar screen" of the programmer's awareness, just as we did with compiler optimization, the creation of object code, and linking. We've done a great job building programming environments that produce fast executables without a lot of hand-holding from the programmer. In fact, most programmers today take optimization completely for granted—why not software security analysis and runtime security, too? For that matter, why are we still treating security as a separate problem from code quality? Insecure code is just buggy code! [...] _________________________________________ ISN mailing list Sponsored by: OSVDB.org - For 15 cents a day, you could help feed an InfoSec junkie! (Broke? Spend 15 minutes a day on the project!)
This archive was generated by hypermail 2b30 : Tue Jun 29 2004 - 08:25:39 PDT