
Silicon Graphics

subject: Extended Attributes: Plan G date: February 10, 1995

from: Casey Schaufler

ABSTRACT

The IRIX file system uses an attribute management scheme which is not extensible, each
object having a small, fixed set of information kept about it. In order to implement
mandatory access control (MAC), a mechanism is required to allow potentially large,
variable sized information to be associated with these objects. This scheme implements
extended attributes with a set of regular files in which the information is stored and a set
of kernel functions which manipulate them.

Trusted IRIX/B - Extended Attributes: Plan G

1. Task Scope

2. Requirements

2.1 Orange Book 3.1.1.3.2.1

3.1.1.3.2.1 Exportation to Multilevel Devices
When the TCB exports an object to a multilevel I/O device, the sensitivity label
associated with that object shall also be exported and shall reside on the same physical
medium as the exported information and shall be in the same form (i.e., machine-
readable or human-readable form). When the TCB exports or imports an object over a
multilevel communications channel, the protocol used on that channel shall provide for
the unambiguous pairing between the sensitivity labels and the associated information

that is sent or received.

2.2 Other Requirements

Additional requirements for this task are detailed in req.3.efs.mm, req.3.labels.mm, and
req.3.trade.mm. The security analysis for this task is detailed in ana.3.efs_labels.mm.

3. Security Functionality

The additional file attribute information required to implement MAC was the initial
impetuous for an extended attribute mechanism. The possible future addition of access
control lists inspired the search for a general scheme. Note that the "security
functionality" provided by this mechanism is simply that there is a way to attach the new
attribute information to the file system object.

Page 1 des.3.plang.mm



- 2 -
Extended Attributes: Plan G Casey Schaufler

4. Trusted Behavior

The example of MAC is used to describe how the plan G scheme is used.

4.1 Initialization

The mount(2) system call has been modified to call eag_init() twice, for
attribute/mac_index and attribute/mac_label. The resulting inode
pointers are stored in the mount table entry for that file system. If either call fails these
pointers are set to NULL.

4.2 Getting Attribute Information

The kernel function mac_access() calls eag_fetch () twice, once for the inode to index
mapping from the mac_index file, and once to get the label from the mac_label
file. It then compares the label against the process label to determine the suitability of
the requested operation. The same calls are made by the system call getlabel (2), which
explicitly gets the label of a file for its caller.

4.3 Setting Attribute Information

The kernel function com_nami() calls eag_set() once or twice in each place that a file
system object is created. It is always called to update the mac_index file, and may be
called to update mac_label if the label is not already in that file. The same calls are
made by the system call setlabel(2), which explicitly sets the label of a file for its caller.

5. Data Specification

5.1 Attribute Data Files

5.1.1 attribute/mac_label There is one of these files for each file system. This file
contains MAC labels which have at some time existed on the file system. The format of
each entry in the file is:

<Length><Label>

where length is a four-byte label length and label is the label itself. The length his kept
here to allow swift searching of the file.

5.1.2 attribute/mac_index There is one of these files for each file system. This file
contains the index of the label for a file in the attribute/mac_label file. The
format of each entry in the file is:

<Index><Length>

where index is the byte offset in attribute/mac_label in which the label can be
found and Length is the length of that label.

A performance optimization which should be considered is to store the label directly in
the index file entry if it fits. If the high order bit of the index is set the eight bytes are
assumed to be the label.

There is one entry for each disk-inode on the file system. The entry for the Nth inode is
the Nth entry in the file.

des.3.plang.mm Page 2



- 3 -
Casey Schaufler Extended Attributes: Plan G

5.2 Kernel Data

5.2.1 In-core Inodes The in-core inode is the data structure which is manipulated by the
file system code. While the disk inode is of fixed size, the in-core inode varies depending
on the number of extents required to represent the data contained by the file. What the
disk inode keeps as indirect extents the in-core inode can keep directly.

5.2.2 The Label Lists Data for the four system special labels and three label lists are
maintained by the Trusted IRIX/B kernel. There are separate lists for
MAC_TCSEC_LABEL, MAC_EQUAL_LABEL and MAC_MLD_LABEL type labels.

5.2.3 The Mount Structure The mount structure for each file system is modified to
contain pointers to in-core inodes for the mac_index and mac_label files.
Accesses to these files can thus be made as needed by the kernel functions eag_fetch ()
and eag_set(). The in-core inodes are obtained by calls to eag_init().

5.2.4 The New In-core Inode A pointer to the label of the file is added to the in-core
inode. This pointer points to an entry in the system label list.

5.2.5 NFS Support for the network file system protocol NFS falls out from the design.
The only concern that must be addressed is that the daemons which run on behalf to the
user on the server be granted access where needed. In particular, the daemons must run
with appropriate labels and the code will have to uniformly use correct access control
checks based on the daemon’s capabilities.

6. Interface Specification

6.1 New System Calls

A user process may be allowed to read or write the label of a file using the getlabel (2)
and setlabel(2) systems calls. The manual pages should be consulted for a more detailed
description of the use of these systems calls.

These system calls use the kernel internal functions eag_fetch () and eag_set() rather than
manipulating the files directly.

6.2 Within The Kernel

All manipulations of the plan G database files are done within the kernel. Direct
manipulation of the database files by user processes is not supported and may have non-
deterministic results.

6.2.1 eag_init The kernel internal function eag_init() is passed a path name in the
kernel address space and the inode pointer of the directory to be used as the working
directory. The specified file is opened and the resulting inode pointer returned. The
resulting open file is not associated with the calling process, hence it is not closed should
the process terminate. The function copen1() is called to do the bulk of the file open
work.

6.2.2 eag_fetch The kernel internal function eag_fetch () is passed the number of bytes
desired, their offset in the file, the inode pointer of the file, and the address in which to
place the result. The file identified by the inode pointer is read into the passed address.

Page 3 des.3.plang.mm



- 4 -
Extended Attributes: Plan G Casey Schaufler

The actual I/O is done by a call to FS_READI().

6.2.3 eag_set The kernel internal function eag_set() is passed the number of bytes to be
written, their offset in the file, the inode pointer of the file, and the address from which
the data should be obtained. The file identified by the inode pointer is modified to
contain the new information. The actual I/O is done by a call to FS_WRITEI().

des.3.plang.mm Page 4


